Higher order Calderón-Zygmund estimates for the p-Laplace equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALDERÓN–ZYGMUND ESTIMATES FOR HIGHER ORDER SYSTEMS WITH p(x) GROWTH

for φ ∈ W 0 ( Ω;R ) with |Dmφ|p(·) ∈ Lloc (Ω) , suppφ ⋐ Ω. Here A denotes a vector field A : Ω × ⊙m(Rn,RN ) → Hom(⊙m(Rn,RN ),R), F : Ω → RN(n+m−1 m ), and p : Ω → (1,∞) a measurable function. ⊙m(Rn,RN ) denotes the space of symmetric m– linear forms on R with values in R . The coefficient A is supposed to have p(x)– growth, i.e. for μ ∈ [0, 1] there holds 〈DzA (x, z)λ, λ〉 ≈ ( μ + |z| ) p(x)−2 2...

متن کامل

ENCLOSURE METHOD FOR THE p-LAPLACE EQUATION

We study the enclosure method for the p-Calderón problem, which is a nonlinear generalization of the inverse conductivity problem due to Calderón that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, wh...

متن کامل

CALDERÓN-ZYGMUND ESTIMATES FOR PARABOLIC p(x, t)-LAPLACIAN SYSTEMS

We prove local Calderón-Zygmund estimates for weak solutions of the evolutionary p(x, t)-Laplacian system ∂tu− div ( a(x, t)|Du|p(x,t)−2Du ) = div ( |F |p(x,t)−2F ) under the classical hypothesis of logarithmic continuity for the variable exponent p(x, t). More precisely, we show that the spatial gradient Du of the solution is as integrable as the right-hand side F , i.e. |F |p(·) ∈ Lqloc =⇒ |D...

متن کامل

Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case

We prove that for p ≥ 2 solutions of equations modeled by the fractional p−Laplacian improve their regularity on the scale of fractional Sobolev spaces. Moreover, under certain precise conditions, they are in W 1,p loc and their gradients are in a fractional Sobolev space as well. The relevant estimates are stable as the fractional order of differentiation s reaches 1.

متن کامل

Eigenvalues Estimates for the p-Laplace Operator on Manifolds

The Laplace-Beltrami operator on a Riemannian manifold, its spectral theory and the relations between its first eigenvalue and the geometrical data of the manifold, such as curvatures, diameter, injectivity radius, volume, has been extensively studied in the recent mathematical literature. In the last few years, another operator, called p-Laplacian, arising from problems on Non-Newtonian Fluids...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2020

ISSN: 0022-0396

DOI: 10.1016/j.jde.2019.08.009